11718

3 Hours / 100 Marks

Instructions -

- (1) All Questions are Compulsory.
- (2) Answer each next main Question on a new page.
- (3) Illustrate your answers with neat sketches wherever necessary.
- (4) Figures to the right indicate full marks.
- (5) Assume suitable data, if necessary.
- (6) Use of Non-programmable Electronic Pocket Calculator is permissible.
- (7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Attempt any $\overline{\text{TEN}}$ of the following:

20

- a) Find x and y if x(1-i) + y(2+i) + 6 = 0
- b) Express in a+ib form $\frac{2-\sqrt{3}i}{1+i}$
- c) If $f(x) = x^2 2x + 5$ and t = y 2, find f(t).
- d) If $f(x) = \log_a^x$, prove that f(m) + f(n) = f(m.n)
- e) Evaluate $\lim_{x \to -4} \frac{x^2 + 3x 4}{x^2 + 7x + 12}$
- f) Evaluate $\lim_{x \to 0} \frac{4x \tan x}{3x + \tan x}$

- g) Evaluate $\lim_{x \to 0} \left(\frac{e^{3x} 1}{4x} \right)$
- h) Find $\frac{dy}{dx}$, if $y = \log[\tan(4 3x)]$
- i) Find $\frac{dy}{dx}$, if $x = a(\theta \sin \theta)$, $y = a(1 \cos \theta)$
- j) Differentiate $\cos^{-1}(1 2\sin^2 x)$
- k) Show that there exist a root of the equation $x^3 + 2x^2 8 = 0$ between 1 and 2.
- l) Solve the following equations by using Gauss-Seidal method (only first iteration)

$$10x + 2y + z = 9$$
; $x + 10y - z = -22$; $-2x + 3y + 10z = 22$

2. Attempt any FOUR of the following:

a) Simplify using De-Moiver's theorem

$$\frac{(\cos \theta - i \sin \theta)^6 (\cos 5\theta - i \sin 5\theta)^{-2}}{(\cos 8\theta + i \sin 8\theta) \frac{1}{2}}$$

- b) Find cube root of unity.
- c) If $x + iy = \sin(A + iB)$, prove that $\frac{x^2}{\cos h^2 B} + \frac{y^2}{\sin h^2 B} = 1$
- d) Prove that $(1 + \cos \theta + i \sin \theta)^n + (1 + \cos \theta i \sin \theta)^n$ = $2^{n+1} \cdot \cos^n \left(\frac{\theta}{2}\right) \cdot \cos\left(\frac{n\theta}{2}\right)$
- e) If $f(x) = \frac{2x+5}{3x-4}$ and $t = \frac{5+4x}{3x-2}$ show that f(t) = x
- f) If $f(x) = \log\left(\frac{1+x}{1-x}\right)$, show that $f(a) + f(b) = f\left(\frac{a+b}{1+ab}\right)$

Marks

3. Attempt any FOUR of the following:

16

a) If
$$f(x) = \log\left(\frac{x}{x-1}\right)$$
, show that $f(a+1) + f(a) = \log\left(\frac{a+1}{a-1}\right)$

b) If
$$f(x) = x - \frac{1}{x}$$
, then prove that $[f(x)]^3 = f(x^3) + 3f(\frac{1}{x})$

c) Evaluate
$$\lim_{x \to 0} \left(\frac{\sqrt{1+x} - \sqrt{1-x}}{x} \right)$$

d) Evaluate
$$\lim_{x \to \pi/4} \left(\frac{2 - \sec^2 x}{1 - \tan x} \right)$$

e) Evaluate
$$\lim_{x \to 0} \left(\frac{6^x - 2^x - 3^x + 1}{x^2} \right)$$

f) Evaluate
$$\lim_{x \to 5} \left(\frac{\log x - \log 5}{x - 5} \right)$$

4. Attempt any FOUR of the following:

16

a) Using first principal find the derivative of $\sin x$

b) Find
$$\frac{dy}{dx}$$
 if $x = a(\cos \theta + \theta \sin \theta)$ and $y = a(\sin \theta - \theta \cos \theta)$

c) Find
$$\frac{dy}{dx}$$
 if $y = \sin^{-1}\left(\frac{\cos x + \sin x}{\sqrt{2}}\right)$

d) If
$$e^y = y^x$$
, prove that $\frac{dy}{dx} = \frac{(\log y)^2}{(\log y - 1)}$

e) If
$$y = (\sin x)^{\log x}$$
, find $\frac{dy}{dx}$.

f) If
$$x^3 + y^3 = 3axy$$
, find $\frac{dy}{dx}$ at the point $(\frac{3a}{2}, \frac{3a}{2})$

5. Attempt any FOUR of the following:

16

- a) Evaluate $\lim_{x \to \infty} \left(\frac{1+3x}{3x-2} \right)^{2x}$
- b) Evaluate $\lim_{x \to a} \left(\frac{\cos x \cos a}{\sqrt{x} \sqrt{a}} \right)$
- c) Using Bisection method find the approximate root of $x^3 x 4 = 0$ (Three iterations only)
- d) Using Regula-Falsi method, find approximate root of $x^3 9x + 1 = 0$ (Three iterations only)
- e) Solve by Newton-Raphson method $x^3 + 2x 20 = 0$ (Three iterations only)
- f) Find approximate value of $\sqrt[3]{100}$ by using Newton-Raphson method (Three iterations only)

6. Attempt any FOUR of the following:

16

- a) Differentiate $\cos^{-1}(2x\sqrt{1-x^2})$ w.r.to $\sec^{-1}(\frac{1}{\sqrt{1-x^2}})$.
- b) If $y = A\cos(\log x) + B\sin(\log x)$, prove that $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = 0$
- c) Solve by Gauss-elimination method x + 2y + 3z = 14, 3x + y + 2z = 11, 2x + 3y + z = 11
- d) Solve by Jacobi's method $10x + y + 2z = 13, \ 3x + 10y + z = 14, \ 2x + 3y + 10z = 15$ (Three iterations only)
- e) Solve by using Gauss-Seidal method 6x + y + z = 105, 4x + 8y + 3z = 155, 5x + 4y 10z = 65 (Two iterations only)
- f) Solve by Gauss-Seidal method x + 7y 3z = -22, 5x 2y + 3z = 18, 2x y + 6z = 22 (Two iterations only)